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Abstract: The quantification of post-disturbance root reinforcement (RR) recovery dynamics is of
paramount importance for the optimisation of forest ecosystem services and natural hazards risk
management in mountain regions. In this work we analyse the long-term root reinforcement dynamic
of spruce forests combining data of the Swiss National Forest Inventory with data on root distribution
and root mechanical properties. The results show that root reinforcement recovery depends primarily
on stand altitude and slope inclination. The maximum root reinforcement recovery rate is reached
at circa 100 years. RR increases continuously with different rates for stand ages over 200 years.
These results shows that RR in spruce stands varies considerably depending on the local conditions
and that its recovery after disturbances requires decades. The new method applied in this study
allowed for the first time to quantify the long term dynamics of RR in spruce stands supporting new
quantitative approaches for the analysis of shallow landslides disposition in different disturbance
regimes of forests.

Keywords: Picea abies (L.) Karst.; slope stability; disturbances; forest resilience; shallow landslides

1. Introduction

In mountain regions, many forests protect human settlements and activities against
gravitational natural hazards [1]. At the same time, forest ecosystems worldwide are
increasingly perturbed by climate-driven natural disturbances [2], which may determine a
temporary reduction in the provision of forest ecosystem services, including protection
from natural hazards [3]. One of the priorities of forest management is therefore to avoid
or shorten temporary gaps in forest’s protective effectiveness following forest fires or
stand-replacing silvicultural interventions (e.g., coppicing, clearcutting) [4,5]. Given the
limited resources for forest management, prioritizing silvicultural measures based on the
long-term dynamics of forest ecosystems and their protective effect may be of paramount
importance in the context of an integrated risk management of natural hazards [1].

The relationship between post-disturbance root reinforcement recovery dynamics in a
forest stand and the hazards of shallow landslides is a prime and documented example in
this context. The long-term dynamics of root reinforcement in mountain forest management
has important implications for the decision makers, not only for post-disturbance man-
agement measures but also for optimising forest ecosystem services of forests in general.
Post-event time windows of increased shallow landslide disposition may range from a
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few years [3,6] to several decades [5,7] depending on the disturbance severity, tree species
concerned, and site characteristics. While the recovery of vegetation cover in the short
term has in general an important effect in reducing the runoff in the contribution area of a
potential landslide and in the related effect on building of pore water pressure [8], in the
long term, root reinforcement becomes the dominant factor for slope stability in areas of
potential shallow landslides [9,10].

A large number of studies quantify the short-term dynamics of root reinforcement
after a disturbance in forest stands [3,11–14] considering both changes in the spatiotem-
poral distribution of roots [13,15] and the change in their mechanical properties due to
decay [16,17]. Vergani et al. [18] showed that after a stand-replacing fire in scots pine (Pinus
Sylvestris) stands, the reduction in root reinforcement efficiency was mainly due to the
loss of the mechanical properties (such as tensile strength and stiffness) of coarse roots,
implying the total loss of the reinforcement within 5–10 years. Similar rates of decay have
been reported following clearcut coppicing [19]. Studies dealing with dynamics of root
reinforcement recovery are very rare [4]. Ziemer [20] reported that a 50% recovery of root
reinforcement was reached within 15–25 years after clearcutting of lodgepole pine (Pinus
contorta). Gehring et al. [14] found that the gap in protection against shallow landslides
due to the loss of root reinforcement in beech (Fagus sylvatica) stands following wildfires
may extend over 35 years in case of medium to high severity fires. Liu et al. [10] showed
that the recovery of root reinforcement in the first four post-disturbance years in closed
forest stands at high altitudes (i.e., 1800 m a.s.l.) was slow or almost absent, suggesting that
spruce stands at this altitude need particular attention for the study of root reinforcement
dynamics in the long term.

In this paper, we analyse the long-term dynamics of root reinforcement in spruce
forests (Picea abies). This species is known to have a relatively low specific root reinforce-
ment compared to other tree species such as beech or chestnut (Castanea sativa) [14,19,21].
However, spruce is the most common tree species of the reported Alpine protective for-
est area [22], being dominant in Swiss and Austrian protective forests [23,24]. Moreover,
spruce is considered one of the most sensitive species to the ongoing climate change and is
expected to be increasingly vulnerable to disturbances in future decades [25], particularly
due to drought stress and bark beetle outbreaks [26,27]. In addition, in its upper natural
mountain range, spruce forests usually display slow stand dynamics and regeneration
rates [28,29]. In the context of an integrated forest management in the Alpine region,
analytical models for the quantification of post-disturbance root reinforcement dynamic of
this species are particularly needed in assessing future protective capacity, as well as for
planning silvicultural measures.

The aim of this paper is thus to characterise the long-term root reinforcement dynamics
of spruce forests along an altitude gradient by assessing the post-disturbance recovery of
lateral root reinforcement at the stand scale. To this purpose, we combined data of the
Swiss National Forest Inventory (Swiss NFI) and other European forest inventories with
published data on root distribution and root mechanical properties of spruce to calibrate
the Root Bundle Model [30] and to upscale the related root reinforcement effect at stand
scale [14,21].

2. Materials and Methods
2.1. Workflow and Methodological Approaches

The flowchart in Figure 1 shows the overall methodological steps needed for the
calculation of the long-term root reinforcement dynamics at the stand scale. In the first
step, we test different single tree growth models to predict the mean annual diameter at
breast height (DBH) increment of spruce trees using as reference Swiss NFI trees. In a
second step, we calibrate a stand-scale model for the estimation of mean stand age based
on observed forest structure and mean tree size (stem diameter). In the third step, stand
characteristics and root reinforcement data are combined to calculate the lateral root
reinforcement at stand scale. The calculated root reinforcement at the stand scale is then
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paired to the corresponding stand ages. Finally, in a fifth step, the temporal dynamics of
root reinforcement are calculated using an empirical model.

Figure 1. Flowchart showing the datasets and modeling steps done to quantify and model the
temporal dynamics of root reinforcement in spruce forests.

2.2. Data Sources

Long-term spruce stands data are retrieved from the Swiss NFI and other European
forest inventories. For about 40 years, the Swiss NFI has collected data at tree as well as
at stand level using systematic and well-described methods [31,32]. The first Swiss NFI
(NFI1) was conducted between 1983 and 1985, followed by three additional surveys in
1993–1995 (NFI2), 2004–2006 (NFI3), and 2009–2017 (NFI4). Since 2009, data have been
collected over a nine-year period. Currently, the fifth inventory is underway from 2018 to
2026 (NFI5). The terrestrial data of NFI1 were collected on some 11,000 plots located on
a systematic 1 km × 1 km grid covering the entire country [33]. Since NFI2 the number
of sample plots is reduced, and field measurements are conducted on a 1.4 km × 1.4 km
subgrid of the NFI1 grid resulting on about 6500 forest plots in NFI4. On each plot, two
concentric circles (i.e., 200 m2 and 500 m2 in size, respectively) are defined to measure all
trees and shrubs with a DBH between 12 cm and 36 cm in the inner circle, respectively, and
all trees with a DBH larger than 36 cm in the outer one [33].

Site characteristics such as altitude, aspect, and slope as well as the stand density
index (SDI) were also retrieved from Swiss NFI data to be used as explanatory variables
for modeling the DBH growth of individual trees. SDI is defined by Reineke et al. [34]
using the allometric coefficient described in Schütz and Zingg [35]. Tree density (number of
stems per hectare) and mean size (quadratic mean DBH) were also collected from the Swiss
NFI for the upscaling of the root reinforcement at stand level. Furthermore, 2640 plots from
Italy, Germany, Czech Republic, and France were included in order to compare the results
of the Swiss stands with values obtained for the rest of the continent [36]. This dataset is
named “European” in this manuscript.

Data on spruce root distribution and mechanical properties (maximum tensile strength
and apparent secant stiffness) were retrieved from published studies on root reinforcement
of spruce stands [13,37,38]. The spatial distribution of roots in spruce stands was calculated
following Schwarz et al. [21] using data from 95 soil profiles in six different locations in
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Switzerland [37,38]. The mechanical properties of roots were quantified based on 93 field
pull-out tests described in Vergani et al. [37] and Moos et al. [38].

2.3. Stem Diameter Growth Modelling

To quantify the average DBH growth of spruce trees under the existing Swiss environ-
mental conditions, we built a simplified model using diameter increment data of more than
50,600 individuals belonging to 8631 spruce-dominated plots and measured in at least two
consecutive Swiss NFI inventories (i.e., NFI1-NFI2, NFI2-NFI3, NFI3-NFI4). We defined
spruce-dominated stands as Swiss NFI-plots with at least 80% of the basal area represented
by spruce trees.

In our modeling approach, we first modelled tree growth as a function of individual
tree DBH and then refined the model using stand and site parameters such as SDI, altitude,
aspect, and slope, implementing either a nonlinear [29] or a linear modeling approach.

The mean annual tree diameter increment (in cm) at the stand scale can be considered
as the approximation of a continuous growth rate, i.e.,

Mean Annual Diameter Growth =
∆DBH

∆τ
∼ dDHB

dτ
(1)

where τ represents the beginning time of the measurements of the DBH. If we denote by t
the age (years) of a spruce tree, we have that:

t = τ + c1.3 (2)

where c1.3 is the mean time needed by seedlings to reach 1.3 m height.
Data for the estimation of c1.3 were sourced from an unpublished dataset from the

Swiss Alps [39], containing totally 231 spruce. The spruce at <1200 m.a.s.l. reaches 1.3 m
height in 9 years, while this time increases to 12 and 17 years respectively for high montane
(1200–1600 m.a.s.l.) and subalpine forests (1600–2100 m).

We present hereafter two suitable models to model DBH growth. The nonlinear model
(NLM) is based on the Gompertz function:

dDBH
dτ

= β1DBH + β2DBH · lnDBH + εerror (3)

where β1 and β2 are model coefficients. We consider a small error term εerror ≈ 0 and take
as initial measurement:

DBH(τ = 0) = εDBH > 0 (4)

i.e., the measured initial DBH of the spruce at the age t = τ + c1.3 years is small but different
from 0. NLM will not allow to use a more simplified initial condition and then reduce all
to εDBH = 0. Imposing εDBH = 0 the differential equation will lead to the trivial solution
DBH(τ) = 0 for all τ > 0.

Equation (3) is equivalent to:

dDBH
dτ

= −r · DBH · ln
DBH

K
(5)

where r indicates the growth rate and K the carrying capacity (or upper asymptote for
growth). Relations among coefficients of Equations (3) and (5) are as follows:

β1 = r · lnK and β2 = −r (6)

K = e
−

β1

β2 and r = −β2. (7)
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According to Schelhaas et al. [29] the parameters β1 and β2 are dependent upon a
number of environmental and site variables:

β1 = c1 +
p

∑
i=1

θi,1 · Xi = c1 + θ1,1slope + θ2,1altitude + θ3,1aspect + θ4,1SDI (8)

β2 = c2 +
p

∑
i=1

θi,2 · Xi (9)

where θi,2 is a weighted array of model coefficients. This approach allows the weighting of
individual variables (Xi) to be discussed in a multivariable model.

The analytical solution of this model is given by:

DBH(τ) = K · ec·e−r·τ
(10)

where C is the constant related to the initial condition DBH(0) = εBHD:

C = ln
DBH(0)

K
= ln

εDBH
K

(11)

The linear model (LM) proposed as a simplification of NLM:

dDBH
dτ

= β1 + β2 · DBH (12)

Since the measurement of DBH begins at τ = 0 (i.e., at age c1.3 years, when the spruce
reaches the height of 1.3 m) we have again:

DBH(τ = 0) = εDBH > 0. (13)

One of the advantages of LM is the possibility to use a suitable simplified approxi-
mated initial condition without losing the sense of the growth process: we can here impose
DBH(τ = 0) = 0. This initial condition makes sense even if inserted in Equation (12):

dDBH
dτ

(τ = 0) = β1 + β2 · DBH(τ = 0) = β1 (14)

The “initial” growth rate at τ = 0 of the spruce tree is given by the strictly positive
coefficient β1.

The general solution of the classical ordinary linear differential Equation (12) is:

DBH(τ) = C · eβ2·τ − β1

β2
(15)

where
C = DBH(τ = 0) +

β1

β2
= 0 +

β1

β2
=

β1

β2
(16)

From (15) and (16), we obtain

DBH(τ) =
β1

β2
· (eβ2·τ − 1) (17)

where parameters β1 and β2 were again determined using Formulas (8) and (9) for NLM.

2.4. Estimation of Mean Stand Age

Considering Equation (14) and its solution (17) to the mean annual DBH growth rate of
the stand, it is possible to determine a formula for τ. In particular, it is possible to represent
the mean age of a spruce stand as a function of its quadratic mean diameter (QMD):
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τ =
1
β2

· ln
(

β2

β1
· QMD + 1

)
(18)

The age of the stand, t (years), is therefore:

age = t = τ + c1.3 =
1
β2

· ln
(

β2

β1
· QMD + 1

)
+ c1.3 (19)

2.5. Upscaling of Root Reinforcement

The Root Bundle Model-Weibull (RBMw) was used as a basis for the calculation of
the root reinforcement at tree and upscaled to stand level following Schwarz et al. [21],
as described in Vergani et al. [13] and most recently in Gehring et al. [14]. The upscaling
consists of two parts. On one hand, (1), roots of several trees are counted and measured
for their thickness in soil trenches at different distance from tree stems. On the other
hand, (2), the mechanical properties, tensile strength, and apparent secant stiffness of the
roots are needed to determine the maximum pulling force of the roots [30,40]. The root
mechanical properties for different root diameter (up to 40 mm) are determined by field
pull-out tests [13,19,38,41].

From these parameters (i.e., number of roots and root mechanical properties) a model
of the maximum tensile force at the level of a single tree root system can be generated.

The maximum root reinforcement RRmax is calculated with the following formula
implemented in the SlideforNET model [14,15] :

RRmax(DBH, d) = a · DBH · Γ
(

d
DBH · 18.5

, b, c
)

f or d < 18.5 (20)

RRmax(DBH, d) = 0 f or d > 18.5 (21)

where Γ stands for the gamma distribution, and d [m] for the distance from the stem
base. The coefficients a, b and c are species-specific. For spruce these are: a = 276,601.4,
b = 0.0122, c = 0.00468. The correlation coefficient of the fit is 0.6 and the residual standard
error is 6530 N/m.

For upscaling to stand level, the number of trees per hectare and the quadratic mean
tree diameter are used. It is assumed that the trees are homogeneous and distributed
over the area in a triangular grid. The value of RRmax calculated for the largest distance
between two trees is used as root reinforcement of the stand. This should represent the
weakest point of the root network at the stand scale. Thus, the model uses the pessimistic
value (minimum) of root reinforcement at stand scale.

To quantify root reinforcement, stand data from the Swiss NFI surveys were used.
The lateral root reinforcement was calculated from the 7191 (filtered from the original 8631,
considering only stand with RRmax > 0) stands using the corresponding input parameters
and SlideforNET.

2.6. Model for the Temporal Dynamics of Root Reinforcement after Disturbances

The data on calculated stand age (Sections 2.3 and 2.4) and the data on upscaled stand
root reinforcement (Section 2.5) were used to model the recovery of root reinforcement
as function of time since disturbance. The model is based on the cumulative distribution
function of the two parameter Weibull distribution:

RR = (s_1 + q1 · slope + q2 · altitude)
(

1 − exp
(
−
( age

λ

)k
))

(22)

where s_1, q1, q2, k, and λ are coefficients fitted after Schelhaas et al. [29].
The coefficients of the model were fitted using the nls() function of the R software [42].

The upper and lower 95% prediction interval were calculated using standardized resid-
uals [43], in order to consider heteroscedasticity. Age 0 is considered as the year of first
establishment of spruce regeneration after a disturbance, which may depend on the type of
successional dynamics that takes place at any specific site.
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3. Results
3.1. Modeling of Growth Rate

Based on the analysis of the Swiss NFI data, the yearly diameter growth of single
spruce trees ranges between 0.1 and 1 cm/year. The overall median value is 0.305 cm/year,
whereas the mean value is 0.377 cm/year. Most of the data refer to a range of DBH of single
trees between 25 and 50 cm. The results of the model fitting show that the performance of
the two models (NLM and LM) are similar as well as the significance of the model variables
(Tables 1 and 2). For both models the SDI is the most important parameter, followed by
slope and altitude. Aspect has no statistically significant influence on growth rate.

Table 1. Coefficients of the NLM. RMSE = 0.2207 cm/year on 8621 degrees of freedom.

Coefficient Value Std Error Error t-Value p-Value

Slope x1 −2.819 × 10−4 2.928 × 10−5 −9.631 <0.001
Altitude x2 −1.674 × 10−5 2.025 × 10−6 −8.267 <0.001
Aspect x3 1.062 × 10−5 1.413 × 10−5 0.751 0.452

SDI x4 −4.993 × 10−5 2.329 × 10−6 −21.438 <0.001
Slope y1 6.637 × 10−5 7.763 × 10−6 8.550 <0.001

Altitude y2 3.865 × 10−6 4.579 × 10−7 9.502 <0.001
Aspect y3 4.974 × 10−7 3.156 × 10−6 −0.771 0.441

SDI y4 1.031 × 10−5 5.279 × 10−7 19.523 <0.001
c_1 1.120 × 10−1 2.822 × 10−3 39.694 <0.001
c_2 −2.528 × 10−2 7.494 × 10−4 −33.740 <0.001

Table 2. Coefficient of the LM. RMSE = 0.2207 cm/year on 8621 degrees of freedom.

Coefficient Value Std Error Error t-Value p-Value

Slope x1 −2.033 × 10−3 2.695 × 10−4 −7.543 <2 × 10−16

Altitude x2 −1.301 × 10−4 1.783 × 10−5 −7.299 <2 × 10−16

Aspect x3 −5.059 × 10−5 1.246 × 10−4 −0.406 0.6848
SDI x4 −4.255 × 10−4 2.086 × 10−5 −20.400 <0.001

Slope y1 1.671 × 10−5 7.129 × 10−6 2.343 0.0191
Altitude y2 1.164 × 10−6 4.754 × 10−7 2.449 0.0144
Aspect y3 8.503 × 10−7 3.223 × 10−6 0.264 0.7919

SDI y4 6.143 × 10−6 5.461 × 10−7 11.249 <0.001
c_1 9.049 × 10−1 2.388 × 10−2 37.885 <0.001
c_2 5.751 × 10−3 6.393 × 10−4 −8.996 <0.001

Overall, assuming a median value for each predictor, LM predicts an almost constant
growth rate of about 0.4 cm/year (Figure 2). The variability of model results decreases
with increasing DBH.

In view of these results, we chose to drop the “aspect” predictor (see Table 3 for
coefficient) and to use LM for further analyses.

Table 3. Coefficient of the LM without aspect. RMSE = 0.2109 cm/year with 8623 degrees of freedom.

Coefficient Value Std Error Error t-Value p-Value

Slope x1 −2.035 × 10−3 2.694 × 10−4 −7.553 4.70 × 10−14

Altitude x2 −1.306 × 10−4 1.780 × 10−5 −7.339 2.34 × 10−13

SDI x4 −4.257 × 10−4 2.084 × 10−5 −20.429 <0.001
Slope y1 1.678 × 10−5 7.127 × 10−6 2.355 0.0186

Altitude y2 1.170 × 10−6 4.747 × 10−7 2.466 0.0137
SDI y4 6.147 × 10−6 5.453 × 10−7 11.272 <0.001

c_1 9.014 × 10−1 2.231 × 10−2 40.411 <0.001
c_2 −5.691 × 10−3 6.019 × 10−4 −9.455 <0.001
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Figure 2. Sensitivity analysis of the linear growth rate model. The data are presented in 2 cm DBH classes from 0.12 m up to
0.76 m. For each parameter, model predictions using median values for predictors and their 90th percentile interval are
shown: (a) SDI, (b) altitude, (c) slope, (d) aspect, (e) all variables. The yellow line shows the percent frequency of data
included in each DBH class.

3.2. Calculation of Root Reinforcement

The information on mean DBH and stem density for each stand were used to calculate
the minimum values of lateral root reinforcement at the stand scale for the Swiss NFI and
European datasets (Figure 3). The two ranges of root reinforcement overlap up to a DBH
class of about 50 cm, while for larger DBH the returned root reinforcement was higher in
the European dataset. In general, lateral root reinforcement of spruce stands in Europe can
be expected to be linearly proportional to the mean DBH of the stand and to have values
up to ca. 30 kN/m.
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Figure 3. Comparison of the root reinforcement as function of the DBH for Swiss NFI data (n = 7191)
and European data (n = 2640).

3.3. Modelling Root Reinforcement Dynamic

The calculated lateral root reinforcement (Equation (19)) increases continuously with
increasing stand age up to median values of about 10 kN/m at 200 years (Figure 4). 50% of
the root reinforcement values (i.e., from the 25% to the 75% quantiles) for stand ages higher
than 150 years range between 6 and 13 kN/m.

Figure 4. Root reinforcement dynamics over time, according to the model after Weibull. The data are
presented in 10-year classes from 30 up to 250 years. The yellow line shows the distribution of data
frequency in percentage.

All the parameters of the RR˜age model have a p-value lower than 0.001 (Table 4),
indicating a statistically significant influence on the results. The negative values of the
coefficient q1 and q2 indicate that lateral root reinforcement decreases with increasing
altitude and slope. The scaling factor λ of the Weibull distribution has a value of 150,
and the shape parameter k is 2.017.
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Table 4. Coefficient of the RR˜age model. The RMSE has a value of 1.738 kN/m on 7192 degrees
of freedom.

Coefficient Value Std Error Error t-Value p-Value

q1 −0.06986 0.0027 −25.98 <0.001
q2 −0.0085 0.0002 −39.38 <0.001

lambda 150.04 2.7191 55.18 <0.001
k 2.017 0.0293 68.79 <0.001

s_1 27.87 0.5932 46.99 <0.001

The variability of the predicted values increases with increasing root reinforcement,
whereby up to values of 12 kN/m, the range of 50% predicted values is in the range of
approximately 2 kN/m (Figure 5).

Figure 5. Predicted values of RR using the Weibull RR-model compared with the calculated values
based on Swiss NFI. The numbers on the top show the sample size of each box. The red line shows
the 1:1 fitting.

A sensitivity analysis in accord to Schelhaas et al. [29] of the RR˜age model shows that
altitude influenced the results up to approximately 30% of their median value, whereas the
slope influences up to approximately 15% (Figure 6). The inflection point of the curve is at
106 years (corresponding to the mode value of the Weibull cumulative distribution).

Figure 6. Sensitivity analysis of the different variables on the RR dynamics over time. The altitude
has the highest influence on the RR.
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4. Discussion
4.1. Comparison of the Two Growth Rate Models

The two models applied to describe the DBH increment in this paper are related to the
classical topic in the mathematics of differential equation for population growth models.
The choice of a model to fit a growth process can be done stepwise considering which
type of complexity can be afforded and at the same time, which prediction accuracy is
requested for the model applications. The use of a linear model is considered in general to
give a good approximation of an initial growing phase or for a very slow growth process.
Vice versa, “logistic“ or “Gompertz” models are expected to fit better for more complex
growing behaviours [29,44]. The very large dataset considered in the analysis supports,
within the aim of this study, the linear growth model approximation to perform best,
allowing us to reduce the model complexity by however achieving a suited prediction
accuracy. In our specific case, incertitudes due to the 1 cm measurements accuracy of the
DBH are compensated by the high number of trees measured and the years between two
inventories. The linear behaviour of the growth rate data in this work is influenced by
two additional characteristics: firstly, measurements are taken for trees with DBH > 12 cm,
meaning that the usually higher growth rate of the first years is not considered, and
secondly, the growth rate is calculated as the mean considering the DBH increment of
single trees over 4–6 years, leading to a smoothing of the annual growth rate, especially in
the first years.

In selecting the model variables we paid attention to inserting only easily measurable
parameters in order to make the proposed approach useful for practical applications such
as the assessment of forest recovery after disturbances. As a result, we ended up with
a reduced number of variables in comparison to Schelhaas et al. [29] and we used for
instance the easy retrievable altitude instead of the correlated temperature data. However,
our approach makes it more difficult to project current dynamics into the climate change
scenarios. Nevertheless, present studies did not reveal significant changes in the growth
rate of spruce along altitude gradients in the European Alps, indicating no climate change
effects so far [45].

In the model, the SDI for the estimation of the stand age is considered as a static
variable, although it may change over time in reality. In the scope of this work, however,
the SDI calculated from the Swiss NFI data is considered representative for predicting
the root reinforcement dynamics after a disturbance. Future studies on this topic could
implement more variables such as soil properties and type of forest management to im-
prove the performance of the growth rate model. The competition between trees and
climate extremes considerably influences the growth rate and eventually also the survival
chance of single individuals [46]. However, the effects of self-thinning mechanisms and/or
silvicultural interventions have in general small and limited-in-time impacts on the overall
growth rate of spruce stands [47,48]. Considering the results by Uhl [49], this behaviour
seems limited to less productive sites, whereas in favourable conditions for spruce, single
trees show significant growth increment after thinning.

Based on the NFI data used for calibration, the proposed model assumes site specific
optimisation of the overall stand growth rate at the stand scale, which results from the balanc-
ing competition for resources and the related population densities [34]. Pretzsch et al. [50]
discussed the reaction pattern of forest stands or cohorts as more than just the growth
response of individual trees depending on their competition for resources. The results of our
study for spruce show a complete symmetry of growth rate versus single tree size (DBH).
This result could be interpreted as a stronger competition of trees for limited below-ground
resources (independently of the tree size) [51] and less than competition for light (which is
expected to lead to a stronger correlation between growth rate and single tree dimension).
Pretzsch et al. [50] state that “simulations for archetypical stands yield a transition from
size-asymmetric to size-symmetric competition along the gradient from fertile to poor sites”.
In combination with our results, this statement leads to the conclusion that spruce in the
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NFI dataset tend to compete for soil resources, more than for light. A detailed analysis of
dendrochronological data could be used in future works to further investigate these aspects.

4.2. Correlation between Mean DBH and Stand Age

The general trend of a constant growth rate is confirmed by the linear correlation
between age and mean DBH of dominant trees in a stand, as reported in yield tables for
spruce [52]. Figure 7 compares model results of this work with the different growing classes
(“Bonitäten”, growing potential of the tree species on a given site) of the Swiss yield tables.
Similar trends are shown in Stöcker [53], Ammann [54], Schelhaas et al. [55], Simmler [56],
and Kindermann et al. [57]. Castagneri et al. [58] obtained DBH˜age curves of single spruce
trees in Norway from dendrochronological analysis. Their results show that fast growing
young trees generally tend to die, whereas older trees have a more regular linear growth.
This supports the conclusion that mean growing rate of forest stand is dominated in the
long term by trees with a constant linear growth. The results of this study show that site
altitude and slope can explain most of the growing capacity of the concerned spruce stands.

Figure 7. Comparison of the increments of the basal mean stem (dg) of spruce according to the Swiss
yield table [52] with integration of the BHD increments resulting from the Swiss NFI data. The red
dots stand for the subalpine altitudinal stage, blue stand for high montane, light green upper/lower
montane, and dark green stands for the submontane/colline altitudinal stage.

4.3. Upscaling of Root Reinforcement

We use the minimum lateral root reinforcement as a proxy variable for the charac-
terisation of the mechanical effect of root on slope stability at the stand scale. In reality,
lateral root reinforcement is highly variable within a stand, but potential tension cracks of
a landslide can be assumed to follow the weakest paths within a stand. To improve and
extend this calculation to the stabilization effect of roots, basal root reinforcement should
be considered too. In contrast to the lateral reinforcement which acts on the vertical edge
of a potential landslide, the basal root reinforcement interacts along the shear plane of a
potential landslide (parallel to slope) [15]. The basal root reinforcement is thus strongly
influenced by characteristics of the site [59,60] and the depth of the potential shear plane
of a landslide [14,61]. In particular, in the case of very shallow landslides (with depth
< 0.5 m) low values of lateral root reinforcement may result in high values of basal root
reinforcement. High values of lateral root reinforcement may on the contrary result in a
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null basal root reinforcement if the landslide is deep enough. Gehring et al. [14] present an
approach that shows the effect of different basal root reinforcement on slope stability.

In consideration of the variables used to calculate the lateral root reinforcement
(mean stem DBH and mean distance between stems), it is important to mention that the
dimension of the Swiss NFI plots can be considered big enough to be representative of a
forest stand and small enough to avoid extreme heterogeneous pattern of vegetation cover
and structures usually present in larger areas of forest.

4.4. Root Reinforcement Dynamics

The post-disturbance window of susceptibility for shallow landslides mainly depends
on root decay of the dying trees, recovery rate of the new stand in terms of roots and
canopy, and the frequency and magnitude of triggering rainfall events. Considering that
total root decay is usually achieved in a temporal range of 5 to 15 years, the window of
susceptibility can in general be expected to persist over 50 to 100 years. In reality, this
temporal window tends to be shorter in stable areas (where landslides are triggered by
extreme events only) and longer where high values of root reinforcement are needed to
stabilise the slope. A detailed and spatial-explicit quantification of this effect is fundamental
for an effective post-disturbance management that optimises investments of resources and
mitigates the risks due to shallow landslides.

The evaluation of RR-recovery depends on the original conditions of a stand too.
For example, Liu et al. [10] state that recovery in forest gaps is faster than in closed forest,
whereby the term of comparison is completely different. For instance, in forest opening
root reinforcement is dominated by small roots that regrow faster after disturbances due
to grass regrowth and tree regeneration. Whereas, in old and close forest stands, decayed
coarse roots need much more time to be replaced. Moreover, several publications confirm
that the contribution of fine roots to the overall root reinforcement is negligible if coarse
roots are present [10,41].

5. Conclusions

The results of this work show the possible range of root reinforcement dynamic cal-
culated based on existing forest stands (Swiss NFI) in Switzerland. We do not know the
“story” of each stand, but in general the upper boundary of the calculated root reinforce-
ment can be considered as the maximum potential condition that an “ideal” forest can
reach in function of time. In this case, the definition of the “ideal” forest considering the
upper boundary of the estimated root reinforcement is considerably different from the
one applied in the Swiss guidelines for protection forest management. While the latter is
defined on the basis of ecological and structural characteristics of a forest stand (such as
tree stability and the presence of renovation), in this work we propose a more quantitative
approach based on the effect of the vegetation on the hazard process. This allows a better
characterisation of the time required for a forest stand to recover its protection function
and to evaluate the effectiveness of the protection function with respect to the potential of
a stand. In reality, the recovery of the protective function of the forest is often influenced
by many other factors (almost independently of the characteristics of the stand) such as the
concurrence with other species (in some cases neophytes), the damages due to ungulates,
the presence of seed trees, and the mobility of seeds.
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